Python
-
How to Deploy GPU-Accelerated Applications on Amazon ECS with Docker Compose
Many applications can take advantage of GPU acceleration, in particular resource intensive Machine Learning (ML) applications. The development time of such applications may vary based on the hardware of the machine we use for development. Containerization will facilitate development due to reproducibility, and will make the setup easily transferable to other machines. Most importantly, a containerized application is easily deployable to platforms such as Amazon ECS, where it can take advantage of different hardware configurations.
Read now
-
How Developers Can Get Started with Python and Docker
To that end, we are excited to announce that we are releasing a series of programming language-specific guides to help developers go from discovering the basics of Docker to delivering your images into a production environment and more.
Read now
-
Containerized Python Development – Part 3
This is the last part in the series of blog posts showing how to set up and optimize a containerized Python development environment. The first part covered how to containerize a Python service and the best development practices for it. The second part showed how to easily set up different components that our Python application needs and how to easily manage the lifecycle of the overall project with Docker Compose.
Read now
-
Containerized Python Development – Part 2
This is the second part of the blog post series on how to containerize our Python development. In part 1, we have already shown how to containerize a Python service and the best practices for it. In this part, we discuss how to set up and wire other components to a containerized Python service. We show a good way to organize project files and data and how to manage the overall project configuration with Docker Compose. We also cover the best practices for writing Compose files for speeding up our containerized development process.
Read now
-
Containerized Python Development – Part 1
Developing Python projects in local environments can get pretty challenging if more than one project is being developed at the same time. Bootstrapping a project may take time as we need to manage versions, set up dependencies and configurations for it. Before, we used to install all project requirements directly in our local environment and then focus on writing the code. But having several projects in progress in the same environment becomes quickly a problem as we may get into configuration or dependency conflicts. Moreover, when sharing a project with teammates we would need to also coordinate our environments. For this we have to define our project environment in such a way that makes it easily shareable.
Read now